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This study was conducted to investigate the effects of two carotenoids (astaxanthin and
b-carotene) on the sperm quality of goldfish Carassius auratus (Linnaeus, 1758). For this
purpose, six diets containing concentrations of 50, 100, and 150 mg/kg of synthetic astax-
anthin and b-carotene were added to a basic carp diet. One group of fish was also fed with a
control diet (no added carotenoids). Osmolality, spermatocrit value, and sperm concen-
tration significantly increased in the treatment supplemented with 150 mg/kg of astax-
anthin (296.6 � 1.1 mOsm/kg; 29.2 � 0.6%; 17.2 � 0.4 � 109 cells/mL, respectively) and
b-carotene (295.2 � 2.1 mOsm/kg; 32.5 � 1.6%; 17.9 � 0.5 � 109 cells/mL, respectively). The
highest concentration of astaxanthin (10.4 � 1.4 mg/kg) was recorded in the treatment of
A150 (P < 0.05) and did not differ between b-carotene treatments. The highest motility was
observed in the A150 and B150 treatments, and the lowest was observed in the control group
(P < 0.05). The artificial fertilization of the treated males with the similar females (fed with
the control diet) showed that the fertilization rate in the A150 treatments was higher than in
the other treatments (P < 0.05). In conclusion, dietary supplementation with 150 mg/kg of
astaxanthin improves osmolality, motility, fertilization rate, and sperm concentration.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Goldfish (Carassius auratus) are one of the most valuable
fishes in the world. These fish propagate annually at high
numbers [1]. Themanipulationof environmentalparameters,
hormone treatments, and high-quality diets can improve the
efficiency of reproductive performance and productivity [2].
The improvement of fish reproduction is possible through
dietary supplementationwithantioxidants, such asvitaminC
[3], a-tocopherol [4], and carotenoids [5].
ax: þ52 311 2118800.
(A. Seidavi), jesus.

. All rights reserved.
1

Carotenoids are lipid-soluble pigments that are produced
by plants and other photosynthetic organisms [6] and
consumed by other animals. To date, there has been a great
deal of valuable information regarding the functions of
astaxanthin and other xanthophyll carotenoids, such as
canthaxanthin and zeaxanthin, in aquaculture. These func-
tions include the improvement of antioxidant activity for
vitamin A, the improvement of larval development [7], an
increase in fecundity and egg quality in goldfish, and an
improvement in fetal development in goldfish [1]. In many
aquaculture activities, pigments are used to improve meat
color [8] or for ornamental fishes [9]; however, there are
currentlymore important roles for carotenoids: as provitamin
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A [10], antioxidants [11], O2 quenchers or free radical scaven-
gers [12], skin coloration during sexualmaturation, and signal
substances in reproduction [13]. The application of pigments
in aquaculture is conducted in salmonids primarily at the
commercial level; however, as the cost of pigments has risen
by a factor of 2.2, alternative sources are being explored to
reduce costs [14,15].

One of the reported roles of carotenoids is their anti-
oxidant role in animals. Trace amounts of reactive oxygen
species can decrease fertility in organisms [14,16]. Fish
sperm is sensitive to oxidant agents that destroy the fat
layer of sperm [17]. In many aquaculture farms, there has
been an attempt to improve egg and larvae quality, but
sperm quality has been ignored. Blount et al. [18] found
that male fishes transport carotenoids linked to lipopro-
teins into testes to inhibit damage due to reactive oxygen
species. Other studies have shown that there are significant
positive correlations between carotenoid levels in the
bodies of male fish regarding sperm concentration and
motility [19]. These sperm enter into the ovule more
rapidly than other sperm during mating [20], resulting in
increased fertilization efficiency [21]. The efficiency of di-
etary carotenoid supplementation on the growth, skin
coloration, and immune response of fancy carp was
investigated using locally common agricultural plant ma-
terials as natural carotenoid sources [22].

However, few reports exist that evaluate the perfor-
mance of male goldfish fed diets differing in astaxanthin
Table 1
Composition of experimental diets fed to goldfish (Carassius auratus) for 150 day

Description Unit Treatmentsa

A50 A100 A150

Ingredient
Fish meal g/kg 290 290 290
Soybean meal g/kg 290 290 290
Corn meal g/kg 200 200 200
Clupen fish oil g/kg 20 20 20
Wheat flour g/kg 164 164 164
Lime g/kg 4.5 4.0 3.5
Methionine g/kg 2 2 2
Lysine g/kg 2 2 2
Kavilamycineb g/kg 2 2 2
Dicalcium phosphate g/kg 5 5 5
Salt g/kg 5 5 5
Vitamin premixc g/kg 7.5 7.5 7.5
Mineral premixd g/kg 7.5 7.5 7.5
Astaxanthine g/kg 0.5 1 1.5
b-Carotenef g/kg d d d

Dietary chemical analysis
Crude protein % 33.16 � 0.26 33.16 � 0.05 34.11 � 0
Crude fat % 7.98 � 0.70 7.67 � 0.68 8.75 � 0.
Ash % 9.05 � 0.32 9.29 � 0.08 9.31 � 0.
Fiber % 2.32 � 0.24 2.94 � 0.14 2.84 � 0.
Humidity % 5.70 � 0.03 5.71 � 0.03 5.73 � 0.
Total carotenoids mg/kg 52.26 � 1.58 99.53 � 3.06 149.56 �

The nutritional values are expressed as the mean � standard error of the mean.
a A50, A100, and A150 ¼ 50, 100, and 150 mg astaxanthin/kg feed, respectively

control diet (control) did not contain an added carotenoid source.
b Kavilamycine: contains 10,000 mg/kg of avilamycin.
c Vitamin premix (in 10 g): r-aminobenzoic acid (10.0 mg); biotin (0.40 m

(60.0 mg); pyridoxine HCl (12.0 mg); riboflavin (8.0 mg); thiamin HCl (4.0 mg); m
acid (0.80 mg); choline chloride (120.0 mg).

d Mineral premix (in 100 g): k2HPO4 (2.0 g); Ca3(PO3)2 (2.72 g); MgSO4.7H2O
e Astaxanthin: Carophyll Pink 10% (DSM).
f b-Carotene: b-carotene 10% (CWS).
and b-carotene [1]. The objective of this study was to
determine the effect of different dietary levels of astax-
anthin and b-carotene on the reproductive performance of
male goldfishes. In this experiment, the role of astaxanthin
and b-carotene in goldfish sperm and their effects on
reproductive efficiency are studied.

2. Materials and methods

2.1. Fish

The freshwater fish species examined in this study is the
goldfish C auratus (Linnaeus, 1758) of the cyprinidae family.
The female andmale goldfish broodstock used in this study
were produced at the Rasht Bony Fish Hatchery Complex in
Rasht, Iran; the fish-conditioning experiment and egg in-
cubation were also performed here. The experiment was
conducted between December and April. All fish were
handled in compliance with published guidelines for ani-
mal experimentation [23].

2.2. Composition of the diets

To prepare the carotenoid-enriched diets, each carot-
enoid source was weighed, dissolved in water at 35 �C, and
added to the diet according to each tested level [24]. All the
diets were prepared with fish oil and water and processed
in a California Pelleting Machine at a final pellet size of
s.

Control B50 B100 B150

290 290 290 290
290 290 290 290
200 200 200 200
20 20 20 20
164 164 164 164
5.0 4.5 4.0 3.5
2 2 2 2
2 2 2 2
2 2 2 2
5 5 5 5
5 5 5 5
7.5 7.5 7.5 7.5
7.5 7.5 7.5 7.5
d d d d

d 0.5 1 1.5

.34 33.81 � 0.70 34.50 � 0.48 33.97 � 0.50 33.84 � 0.16
43 7.03 � 0.52 8.04 � 0.43 8.62 � 0.31 8.57 � 0.34
04 9.03 � 0.21 9.24 � 0.06 9.26 � 0.09 8.98 � 0.12
28 3.05 � 0.03 2.72 � 0.16 2.78 � 0.21 2.99 � 0.06
07 5.77 � 0.02 5.60 � 0.18 5.71 � 0.04 5.69 � 0.04
1.26 32.44 � 1.92 49.61 � 1.45 101.30 � 114 151.52 � 1.76

; B50, B100, and B150 ¼ 50, 100, and 150 b-carotene/kg feed, respectively;

g); inositol (400.0 mg); nicotinic acid (40.0 mg); calcium pantothenate
enadione (4.0 mg); cyanocobalamin (0.08 mg); calciferol (1.20 mg); folic

(3.04 g).
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2 � 3 mm in diameter. Next, the pellets were dried in a
drying machine (Hobart manufacturing Company Ltd.,
London, UK) for 24 hours at 50 �C. The amount of total
protein, fat, carbohydrates, ash, and moisture in each diet
was measured according to the Association of Official
Analytical Chemists [25] (Table 1).

2.3. Experimental design

A group of 1050 male goldfish measuring 51.20 � 2.21 g
and 14.22 � 1.37 cm was used for the broodstock–condi-
tioning experiment with the carotenoid-enriched diet. The
experiment lasted for 150 days, and it compared the diets
enriched with synthetic astaxanthin (Carophyll Pink 10%;
DSM Nutritional Products Philippines, Inc.dBright Science,
Brighter Living, the Netherlands) and b-carotene (b-caro-
tene 10% CWS; Direct Food Ingredients Ltd., England) with
a control diet for a total of seven treatments run in
triplicate.

For the fish-conditioning experiment, 21 circular fiber-
glass tanks (3.77 m3; 2 m in diameter and 1.2 m in height)
were used. The freshwater parameters of temperature, pH,
dissolved oxygen, nitrite, and ammonia were measured
daily during the experimental period.

One month before the end of the experiment, a group
of 300 female broodstock of 6-month-old goldfish
(47.21 � 2.19 g) from a commercial hatchery was matured
for 30 days in a fiberglass tank (2 m3) with the control diet
to achieve egg fertilization. The freshwater parameters of
temperature, pH, dissolved oxygen, nitrite, and ammonia
were measured daily during the 30 days of female
maturation.

2.4. Artificial propagation

In mid-April, when the water temperature was 21 �C
and 24 hours before stripping, the male fish were injected
intraperitoneallywith a single dosewith Ovaprim hormone
injections at 0.1 mg/kg of their body weight. After 5 hours
of injection, the water was wiped out of their body with a
soft cotton cloth. To observe the free oozing of semen flow,
the fish were held head up and tail down in an inclined
position. During sperm collection, care was taken to pre-
vent contamination by fecal matter, blood, scales, and
urine, and so forth. Sperm were provided with sufficient
oxygen by maintaining sufficient headspace in the collec-
tion tubes (15 mL) and keeping collected milt at 4 �C. Milt
was inserted into 10-mL syringes and transferred into
collection tubes.

Similar to male injections, the female fish were also
injected intraperitoneally with the Ovaprim hormone at
the same time at 0.2 mg/kg of their body weight [26]. Eggs
were collected in glass dishes and kept at room tempera-
ture (20.0 � 1.0 �C) until fertilization trials started (within
<1 hour).

The male/female ratio was 3:1, and 12 male broodstock
were selected for each replication at each step of propa-
gation. In this experiment, semen from 36 males per
treatment was used (12 per tank). The average water
temperature was 19 �C at the time of artificial fertilization.
The fertilization rates were calculated 2 hours after
fertilization. Fertilized eggs were incubated in 1-L vase in-
cubators. After incubation and complete larva emergence,
the survival rate at the incubation stage was calculated as
the following formula:

Survival rate during incubation

¼ ðnumber of produced larvae=number of fertilized eggsÞ
� 100

2.5. Carotenoid extraction

Two fish per replication were sampled at random, and
astaxanthin, b-carotene, and total carotenoid were
measured using the following method: the semen of each
sample was collected and frozen using N2 gas, and the
samples were then placed inside an amber flask under an
N2 gas environment at �18 �C. The procedure of carotenoid
extraction from the samples was conducted using pure
acetone specific to high performance liquid chromatog-
raphy (HPLC) and n-hexane (Hex, analytical grade) based
on a hexane/acetone ratio of 1:3. Afterward, 50 mL was
stored in a glass bottle and wrapped with aluminum foil,
and 5 mL of the hexane–acetone solution was added to the
mixture. The procedure was followed by a 10-minute
agitation of the mixture. The ambient temperature was
22 �C under the dim lighting conditions during the
extraction of carotenoid from the sample [27].

2.6. Measurement of carotenoid

To measure the astaxanthin and b-carotene concentra-
tions, their authentic standards were used for the experi-
ment. The standard solutions were prepared with 2.5 to
540 mg/L concentrations (Sigma Aldrich and Fluka). All the
production and extraction procedures for the samples were
conducted under dim light and an ambient temperature of
22 �C. To extract carotenoid from the semen, a 50-mL wet
sample was homogenized in 3 mL of acetone and vortexed
for 30 seconds followedby 5minutes of centrifugation (1500
rpm). A mixture of solvents, including 2 mL of hexane and
0.5 mL of water, was added to a 2.5-mL volume of the upper
layer. Next, it was vortexed for 30 seconds followed by
5minutesof centrifugation (1500 rpm), and thehexane layer
was dried in a clean tube under a stream of nitrogen. Next,
250 mL of methanol was added to the residue, and 70 mL of
this solution was injected into the HPLC (a Younglin HPLC
systemequippedwith a pump [SP930D], ultraviolet detector
[730D], Rheodyne injector, and Autochro 2000 integrator
software). TheHPLC includes a separation condition: 1.4mL/
min;wavelength: 470 nm; temperature: 25 �C; and column:
C18, InertsilODS-3V:250�4.6mm.MobilephaseA included
methanol and water (97:3), and mobile phase B comprised
methanol, tetrahydrofuran, and water (37:60:3) [27].

2.7. Spermatological analysis

Spermatological analysis was performed at the Dadman
International Sturgeon Research Institute, Rasht, Iran. For
each treatment, 32 male broodstock were selected. The
semen was prepared 22 hours after hormone injection.
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During semen collection, the anal fins of the broodstock
were dried completely. The semen was stripped by
abdominalmassage, collected into glass vials, and stored on
ice until ready for use. Fresh sperm was immediately
maintained at 4 �C, and the sperm concentration was
measured using a Neubauer chamber hemocytometer and
the following method: duplicate samples were prepared
for each semen sample, and a triplicate count was made on
a hemocytometer for each dilution.

The mean of six counts was calculated and provided as
the actual sperm concentration given in numbers per mL
[28]. The counts and measurements were conducted using
a Nikon Eclipse E600 microscope equipped with a Sony
Exwave HAD camera and Biocom Visual 2000 software. The
spermatocrit was determined using semen collected
into standard microhematocrit tubes (75 mm length and
1.1–1.2 mm inner Ø) and centrifuged at 3000 rpm for
10 minutes [29].

The activity of spermatozoa was measured by using the
computer-assisted sperm motion analysis system. Micro-
scope stage and chambers were chilled at 15 � 2.0 �C.
Using a 50-Hz video camera (Panasonic wv-BL600) con-
nected to an S-VHS-video recorder (Panasonic AG-7350),
sperm activity was recorded and later analyzed. The total
magnification was 320-fold. For digital image analysis, a
PC with appropriate hardware and Mika motion analyzer
software were used. One microliter of diluted sperm (2 mL
of semen in 25 mL of a nonactivating solution [300 mOsm/
kg sucrose, pH ¼ 7.4]) was used for each measurement.
Motility was recorded at 15 and 30 seconds after activa-
tion. Only sperm samples showing 80% motility or higher
were used for the experiments [30]. Each sample was
analyzed three times. The number of cells exceeding the
previously established minimum motile speed was used to
determine percent motility, curvilinear velocity, and
straight-line velocity, which were estimated on this motile
fraction.

The analyses of density, velocity, and osmolality
were performed immediately after semen collection
according to the methodology used for carp by Warnecke
and Pluta [31]. Sperm concentration (109 cells/mL) was
measured according to the methods described [32]. Semen
was diluted by a factor of 1000 in a physiologically
saline solution, a droplet was placed on a Burker cell
Table 2
Effects of astaxanthin, b-carotene, and the total carotenoids in the sperm and fert
auratus) in different treatments (n ¼ 252), for 150 dayse.

Parameter A50 A100 A150

Osmolality (mOsm/kg) 291.8 � 1.0ab 289.3 � 0.7b 296.6
Spermatocrit (%) 22.0 � 1.4c 24.6 � 1.9c 29.2
Motility (%) 90.0 � 1.0b 89.3 � 1.0b 92.1
Motility duration (s) 119.2 � 4.4b 124.0 � 2.7a 128.8
Sperm concentration (�109 cells/mL) 13.8 � 0.4c 15.1 � 0.5c 17.2
Fertilization rate (%) 90.6 � 0.6c 91.0 � 0.5bc 96.0
Survival during incubation (%) 74.9 � 0.8b 73.8 � 0.7b 74.9
Astaxanthin (mg/kg) 7.8 � 0.7bc 8.6 � 0.5b 10.4
b-Carotene (mg/kg) 51.3 � 3.2b 66.6 � 3.7a 64.9
Total carotenoids (mg/kg) 10.8 � 0.6b 12.3 � 0.7a 12.8

a,b,c,dData within each row of dietary treatments with no common superscript d
e The carotenoid-enriched diets were tested at three concentrations 50, 100,

tively) and 50, 100, and 150 b-carotene/kg feed (treatments: B50, B100, and B150,
hemocytometer (depth 0.1 mm) and left for a few seconds
for sedimentation, and then, 16 cells of the hemocytom-
eter were counted at � 200 magnification. For the osmo-
lality assays, a digital freezing osmometer at 45 AV
(Roebling) was used.

2.8. Statistical analysis

The results were expressed as the mean � standard
error of mean. A one-way ANOVA, followed by Tukey’s test
post hoc test. Values of P < 0.05 were considered statisti-
cally significant. All statistical analyses were conducted
using SPSS 11.5 for Windows (SPSS Worldwide Headquar-
ters, Chicago, IL, USA).

3. Results

The temperature, pH, dissolved oxygen, nitrite, and
ammonia during the 5 months of male maturation were
17.0 � 1.35 �C, 7.6 � 0.12, 8.1 � 1.2 mg/L, 0.0 � 0.00 mg/L,
and 0.01�0.01mg/L, respectively. No differences (P> 0.05)
in the concentration of the parameters of water quality
were found during the first month of maturity of the fe-
males. Only the temperature changed.

The spermatological parameters in different treatments
are shown in Table 2. Osmolality, spermatocrit value, and
sperm concentration increased (P < 0.05) in the treatment
supplemented with 150 mg/kg of astaxanthin (296.6 � 1.1
mOsm/kg, 29.2 � 0.6%, 17.2 � 0.4 � 109 cells/mL, respec-
tively) and b-carotene (295.2 � 2.1 mOsm/kg, 32.5 � 1.6%,
17.9 � 0.5 � 109 cells/mL, respectively).

The male fish fed diets with varying degrees of astax-
anthin concentrations were found to have higher levels of
the substance in their semen (Table 2), whereas fish semen
did not differ in the b-carotene treatment. The results also
indicated that astaxanthin concentration in the fish semen
of the control was lower than both astaxanthin and
b-carotene treatments (P < 0.05). These findings showed
that fish semen did not differ for b-carotene concentration
in both A100 to A150 and B50 to B150 treatments. The con-
centrations of astaxanthin and carotenoids were higher
(P < 0.05) than those in the control. The highest concen-
tration of astaxanthin (10.4 � 1.4 mg/kg) was recorded in
the treatment of A150 (P < 0.05).
ility parameters (mean � standard error of the mean) of goldfish (Carassius

B50 B100 B150 Control

� 1.1a 292.6 � 2.7ab 287.2 � 3.5b 295.2 � 2.1a 289.8 � 1.0b

� 0.6b 32.0 � 1.3a 29.9 � 0.9b 32.5 � 1.6a 20.0 � 0.5d

� 0.6a 90.3 � 0.8b 89.7 � 0.7b 91.9 � 1.0a 89.0 � 0.7b

� 6.1a 118.8 � 4.3b 114.5 � 5.1bc 122.7 � 5.4a 111.8 � 3.0c

� 0.4a 16.3 � 0.4b 16.0 � 0.3b 17.9 � 0.5a 11.4 � 0.3d

� 0.6a 91.0 � 0.7bc 90.5 � 0.8c 93.6 � 1.0b 90.0 � 0.8c

� 0.9b 75.1 � 1.0ab 76.2 � 0.7a 78.3 � 0.8a 74.3 � 0.6b

� 1.4a 7.1 � 0.5c 7.9 � 0.5bc 8.7 � 0.2b 6.1 � 0.3d

� 5.8a 62.2 � 4.5a 61.1 � 5.3a 62.1 � 5.7a 38.6 � 2.0c

� 1.0a 10.3 � 0.3b 11.7 � 1.1a 12.9 � 0.8a 10.0 � 0.3b

iffer significantly at P < 0.05.
and 150 mg astaxanthin/kg feed (treatments: A50, A100, and A150, respec-
respectively).
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The seminal osmolality value within groups receiving
astaxanthin and b-carotene did not differ. Indeed, it was
equal to the osmolality rate in the control. Generally, the
spermatocrit in b-carotene treatments was higher than in
astaxanthin and control treatments. However, the sper-
matocrit percentage in the semen, sampled from groups
treated by the B50 to B150 treatments, was higher than in the
A50 to A150 treatments.

The highest motility was observed in the A150 and B150

treatments, and the lowest was observed in the control
group (P < 0.05). At this level, the duration of motility had
no significant difference among the studied treatments
(Table 2). The sperm concentrations in A150 and B150 were
higher than those in the other treatments (P < 0.05).
However, sperm concentration in the astaxanthin and
b-carotene treatments showed a significant difference in
comparison with the control treatment (P < 0.05).

The artificial fertilization of the treated males with the
similar females (fed with the control diet) showed that the
fertilization rate in the A150 treatment (Table 2) was higher
than that in the other treatments (P < 0.05). However,
survival was higher in the treatment of b-carotene to
astaxanthin at the end of the incubation stage.

4. Discussion

In fish farms and hatcheries, the biotic and abiotic fac-
tors that affect sperm quality are diverse and are dependent
on complex interactions between genetic, physiological,
and environmental factors [20]. Improvements in brood-
stock nutrition and feeding greatly improve gamete quality
and seed production [4]. The importance of the dietary
antioxidant function of vitamin C on male fish fertility has
been reported in rainbow trout [33]. This provides protec-
tion for the sperm cells by reducing the risk of lipid per-
oxidation and ascorbic acid deficiency which reduces both
sperm concentration and motility (consequently, the
fertility) [34].

In the case of astaxanthin, a synergistic antioxidant ef-
fect was found with a-tocopherol [35–37] protecting
against the early stages of lipid peroxidation.

This is the first study to examine the effect of dietary
supplementation with astaxanthin and b-carotene on the
quality of goldfish semen. Nutrition provided by the
breeder can play an important role as an enhancement
factor of sperm quality.

Generally, motility is the most commonly used param-
eter to evaluate sperm quality [38], whereas fertilizing ca-
pacity is the most conclusive test of sperm quality [38,39].
In this work, the fertilization rate was higher (90%–96%)
than that obtained in other studies (60%–80%) on carp [40]
and Atlantic halibut (54.6%–58.3%) [41], and it was similar
(>95%) to the records for brown trout [42,43]. It has been
found that some nutrients have improved semen quality
and fertilization in fish [44], which agrees with the findings
in this work for the pigments (astaxanthin and b-carotene).
Fertilization increased by the effect of the pigments was not
noticeable because of the high fertilization rate obtained
with this species.

Fish spermatozoa show species differences in the initi-
ation [45,46], duration [47,48], and pattern of motility
[49,50]. In this study, the mean motility in goldfish was
higher (89.3%–93.1%) than the values obtained for rainbow
trout Oncorhynchus mykiss [44] broodstock (88.83%–
89.32%) and the 65% motility at 30 seconds after activation
in Perca fluviatilis [51]; this indicates that the appropriate
pH (9.0) and the ionic composition of activation solution
(osmolality of about 200 mOsm/kg) had conditions [52].
Nevertheless, it is clear that spermatozoa that are highly
motile will have a greater chance of fertilization. In most
farmed fish species, the motility life span is brief (approx-
imately 1 minute), and accurate evaluation of the motility
characteristics can only be made using rapid and sensitive
methods. However, the duration of motility was high in
goldfish (111.8–128.8 seconds). In most freshwater species,
spermatozoa usually move for less than 2 minutes, and in
many cases, they are only highly active for less than 30
seconds [53]. This agrees with the values found in this work
for goldfish.

Although spermatocrit, viability, and motility are scored
relatively easily, the usefulness of motility measurements
has long been questioned because subjective scoring
methods are used and have produced variable results [20].
Therefore, measures of sperm quality should be validated
against successful egg fertilization. In this work, we found
that higher osmolality, motility, duration of motility, and
sperm concentration were associated with the highest rate
of fertilization in the treatment with the highest concen-
tration of astaxanthin (A150). Similar correlations between
sperm motility and fertilization capacity have already been
reported in carp [54], turbot [55], and rainbow trout [56]. If
sperm quality can be related to fertilizing ability, then, it is
possible to use computer-assisted sperm analysis to
routinely assess a very wide range of freezing protocols
without the requirement of females and without the vari-
ability inherent in the use of eggs from different female
goldfish.

In this study, the mean sperm concentration in goldfish
was higher than the values obtained for European hake
Merluccius merluccius [57] and lower than the values ob-
tained for perch [58] and rainbow trout [59], but similar to
those obtained for C carassius [60]. In carp, osmolality-
dependent permeabilization and structural changes are
induced in the spermmembrane by hyposmolality, and the
reorganization of the lipid structure has been proposed as a
possible mechanism [61]. The difference in Kþ ion con-
centration (in salmonids) or osmotic pressure (in cyprinids,
clariids, and other families) between the seminal plasma
and water triggers the initiation of movement [62,63]. The
osmotic pressure seems to be the major controlling factor
in cyprinids [64].

In conclusion, dietary supplementation with 150 mg/kg
of astaxanthin improves osmolality, motility, fertilization
rate, and sperm concentration. This work provides novel
and informative data that could be used to devise the best
rearing conditions for male broodstock and the optimal
handling and storage of spermatozoa before fertilization.
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