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Abstract: The in vitro antioxidant activities of eight 3-carboxycoumarin derivatives were 

assayed by the quantitative 1,1-diphenyl-2-picrylhydrazil (DPPH•) radical scavenging 

activity method. 3-Acetyl-6-hydroxy-2H-1-benzopyran-2-one (C1) and ethyl 6-hydroxy-2-

oxo-2H-1-benzopyran-3-carboxylate (C2) presented the best radical-scavenging activity. A 

quantitative structure-activity relationship (QSAR) study was performed and correlated 

with the experimental DPPH• scavenging data. We used structural, geometrical, 

topological and quantum-chemical descriptors selected with Genetic Algorithms in order to 

determine which of these parameters are responsible of the observed DPPH• radical 

scavenging activity. We constructed a back propagation neural network with the hydrophilic 

factor (Hy) descriptor to generate an adequate architecture of neurons for the system 

description. The mathematical model showed a multiple determination coefficient of 0.9196 

and a root mean squared error of 0.0851. Our results shows that the presence of hydroxyl  

groups on the ring structure of 3-carboxy-coumarins are correlated with the observed 

DPPH• radical scavenging activity effects. 
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1. Introduction 

Antioxidants play important roles in preventing diseases induced by reactive oxygen species, which 

result in oxidative damage, including protein denaturation, mutagenesis and degenerative or pathological 

events, such as aging, asthma, and cancer. The diversity of structural characteristics in the natural and 

synthetic coumarins offers a vast field of research for new biological properties of these compounds. 

Coumarin derivatives constitute an important class of compounds with varied biological properties 

such as anti-inflammatory, antibacterial, cytotoxic, anxiolytic, antitumor, anticoagulant, antiemetic and 

antioxidant activity [1–7]. Due to thir widespread applications, biological activity evaluation of 

coumarin derivatives has been a subject of intense investigations. 

Here we proposed to measure the antioxidant activity in vitro assay of eight 3-carboxycoumarin 

derivatives with different structural variations for modular replication by the quantitative 1,1-diphenyl-

2-picrylhydrazyl (DPPH•) radical scavenging activity method. These is the first time that this 

measurement has been performed on these compounds, although a similar type of coumarins was 

reported by Lin et al. in 2008 [8]. 

Quantitative Structure-Activity Relationship (QSAR/QSPR) methodologies are one of the most 

powerful tools for describing the relationships between biological activity and the physicochemical 

characteristics of molecules. Current literature demonstrates that almost every area of chemical and  

life sciences, as well as technology, utilizes quantitative structure-activity/property relationships 

(QSAR/QSPR) to accelerate product development and increase efficiency. The designs of 

pharmaceuticals, agrochemicals, and consumer products as well as the assessment of their toxicity and 

environmental impact have become major areas of application of QSAR/QSPR techniques, whose 

methods also penetrate into relatively new applications such as materials science and nanotechnology. 

In terms of methodology development the new trend is the integration of QSAR/QSPR with related 

computational methods such as virtual screening and molecular dynamics. Such a synergy offers 

unique opportunities and heralds a new era of computer-aided molecular design [9]. QSAR/QSPR 

modeling usually consist of four main operations: calculating or measuring a pool of descriptors or 

other input variables; choosing a small subset of these descriptors that are relevant to the biological 

activity being modeled (in some cases this step may not be required); generating the often nonlinear 

relationship between the descriptors and the global material property; and validating the model to 

assess its reliability, robustness, predictivity, and domain of applicability [10]. Almost all QSPR 

modeling methods involve some sort of regression. This can be simple least-squares, multiple linear 

regression (MLR) or, where the structure-property relationship is not linear, a polynomial, bilinear, or 

neural network method. The simplest QSPR modeling method is known as multiple linear regression, 

It assumes that the property being modeled is a linear function of the descriptors [11]. To develop a 

QSAR, a more significant number of compounds is required to develop a meaningful relationship. An 

often asked question is “how many compounds are required to develop a QSAR?” There is no direct 

and simple response to this question other than “as many as possible!” To provide some guide, it is 
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widely accepted that between five and ten compounds are required for every descriptor in a QSAR [12]. 

This does suggest that a one descriptor regression-based QSAR could be developed on five 

compounds. This is possible, but is very reliant on issues such as data distribution and range. Ideally 

“many more” compounds are required to obtain statistically robust QSARs, with some modelling 

techniques being considerably more data hungry than regression analysis. In our case, we have only 

eight compounds whose biological activities have been determined experimentally in our laboratory.  

Molecular descriptors are formal mathematical representations of a molecule, obtained by a  

well-specified algorithm, and applied to a defined molecular representation or a well-specified 

experimental procedure: the molecular descriptor is the final result of a logic and mathematical 

procedure which transforms chemical information encoded within a symbolic representation of a 

molecule into a useful number or the result of some standardized experiment. A general consideration 

about the use of molecular descriptors in modeling problems concerns their information content. This 

depends on the type of molecular representation used and the defined algorithm for their calculation. 

There are simple molecular descriptors derived by counting some atom types or structural fragments in 

the molecule, as well as physicochemical and bulk properties such as, for example, molecular weight, 

number of hydrogen bond donors/acceptors, number of OH-groups, and so on. Other molecular 

descriptors are derived from algorithms applied to a topological representation. These are usually 

termed topological, or 2D-descriptors. Other molecular descriptors are derived from the spatial (x, y, z) 

coordinates of the molecule, usually called geometrical, or 3D-descriptors; another class of molecular 

descriptors, called 4D-descriptors, is derived from the interaction energies between the molecule, 

imbedded into a grid, and some probe. Single indexes derived from a molecular graph are called 

topological indexes. These are numerical quantifiers of molecular topology that are mathematically 

derived in a direct and unambiguous manner from the structural graph of a molecule, usually an  

H-depleted molecular graph. On the other hand many of those descriptors are based directly on the 

results of quantum-mechanical calculations or can be derived from the electronic wave function or 

electrostatic field of the molecule [13]. Since the electrophilicity index is a chemical reactivity 

descriptor and its definition has strong foundation from the density functional theory [14,15], it is 

appropriate to make use of this descriptor in the QSAR parlance. Recently the electrophilicity index 

has been used as a possible descriptor of biological activity confirming the fact that the electrophilicity 

properly quantifies the biological activity. Although there is no one-to-one agreement between AM1 

and B3LYP values, the B3LYP method in general provides better estimates of biological activity when 

compared to the corresponding AM1 values [15]. Within the density functional theory framework 

some quantum chemical descriptors such the softness, chemical potential and electrophilicity index, 

where used here because of the good correlation they have shown in the prediction of radical 

scavenging antioxidant activity [16–19]. 

Genetic Algorithms (GA) are powerful computational tools that have been used in many areas of 

investigation because of their reliable mathematical models. This method is based on the mechanism 

of evolution of species, the higher descriptor weights (genes) the more preserved in the mathematic 

model, while the lower weights are eliminated. In this manner, the best mathematical models which 

represent the observed biological activity (phenotype) are obtained [20,21]. Furthermore, Artificial 

Neural Networks (ANN) is a computational tool used in the rationale drug design. ANN tries to 

simulate the human brain mechanism. In this method the basic unit is the neuron and the 
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interconnection of all of them forms the architecture of the neural network. There is a variation of this 

method called back propagation ANN as well. In this, the output of the network is compared to the real 

value and then the network weights are adjusted in order to ensure that the error is minimum. This type 

of neural network is the most frequently used to develop of QSAR and QSPR studies [22,23]. 

2. Experimental Methods and Results 

2.1. Synthesis and Characterization 

Ethyl esters of 6-R-2H-1-benzopyran-2-one-3-carboxylic acids A1–D1 and 3-acetyl-6-R-2H-1-

benzopyran-2-ones A2–D2 (Scheme 1) were synthesized via Knoevenagel condensation. The general 

reaction between 5-substituted salicylaldehydes A–D and ethyl acetoacetate or diethyl malonate at 

refluxing temperature for 24 h gave moderate to good product yields [24–26]. The details and 

spectroscopic data for those compounds are summarized in the Experimental procedures. 

Scheme 1. Reaction for the formation of coumarins. 

 

2.2. DPPH• Radical Scavenging Activity 

Antioxidant compounds play an important role as a health-protecting factor. The interaction of the 

examined compounds with the stable free radical DPPH• was studied. Results of the assays are 

summarized in Figures 1–3.  

Figure 1. DPPH• radical scavenging activity for 3-carboxycoumarin derivatives at a  

10 mg/mL concentration reported as percent of inhibition of DPPH•. 
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Compounds C1 and C2 showed the highest radical scavenging activity (Figure 1). For both 

compounds the interaction was time and concentration dependent (Figures 2 and 3). The time course of 

DPPH• interaction is affected by various concentrations. In general, this interaction expresses their 

ability to scavenge free radicals [27,28]. Trials of discoloration of DPPH• at 60 min with different 

concentrations of compounds C1 and C2 in order to verify the dose-effect of the concentration of these 

compounds on the entrapment of the DPPH• radical [29] are shown below.  

Figure 2. Kinetics of entrapment of DPPH• with respect to the concentration of the compound C1. 
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Figure 3. Kinetics of entrapment of DPPH• with respect to the concentration of the compound C2.  
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3. Computational Details and Results 

A conformational study was performed over the eight coumarins (Table 1) using PM3 semi-empirical 

method as implemented in the SPARTAN′08 code [30,31]. The structures of all conformers of 

minimum energy were fully optimized without symmetry constrains within the density functional 

theory methodologies and the resulting ground states were characterized via frequency analysis. In the 

present work, we have used the hybrid B3LYP [32] functional and the 6-31+G (d,p) basis set [33]. We 
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have included the influence of DMSO solvent using the SMD solvation model [34] implemented in the 

Gaussian 09 program [35]. 

Table 1. Coumarin compounds and their experimental antiradical activity expressed as 

equivalents in % DPPH• inhibition. 

Compound R2 R1 % DPPH• inhibition Log Yexp 

A1 COOCH3 H 13.42 1.13 

B1 COOCH3 NO2 14.43 1.16 

C1 COOCH3 OH 40.67 1.61 

D1 COOCH3 OCH3 9.39 0.97 

A2 COOEt H 8.06 0.91 

B2 COOEt NO2 8.10 0.91 

C2 COOEt OH 56.39 0.75 

D2 COOEt OCH3 11.41 1.06 

Molecular descriptors of all optimized structures were calculated from the DFT context and the 

DRAGON 0́5 program [36]. This software includes 20 families of descriptors in the code. Here, we 

have selected group account, geometrical and molecular property families. These families include a 

total of 257 descriptors but DRAGON program only gave us 73 descriptors based on the molecular 

characteristics of our compounds. We calculated the correlation matrix of these 73 descriptors the data 

analyzer within the Molegro Virtual Docker (MVD) software [37] and obtained nine non-correlated 

descriptors (see Table 2). 

Table 2. Descriptors used in our study. 

PROGRAM DESCRIPTOR TYPE DESCRIPTION 

DRAGON SPH Geometrical Spherosity 

DRAGON Ui Molecular Properties Unsaturation index 

DRAGON Hy Molecular Properties Hydrophilic factor 

DRAGON AMR Molecular Properties Molar refractivity 

DRAGON ALOGP Molecular Properties 
Ghose-Crippen-Viswanadhan  

octanol-water partition coefficient 

DRAGON TPSA Molecular Properties Topological Polar Surface Area 

GAUSSIAN E Quantum-Chemical Total Energy 

GAUSSIAN Dipole Quantum-Chemical Dipole Moment 

GAUSSIAN η Quantum-Chemical Hardness 

GAUSSIAN ω Quantum-Chemical Electrophilicity 

GAUSSIAN µ Quantum-Chemical Chemical potential 

GAUSSIAN S Quantum-Chemical Softness 

GAUSSIAN Gap HOMO-LUMO Quantum-Chemical Energy difference LUMO-HOMO 

The SPH (spherosity) is an anisometry descriptor calculated as a function of the eigenvalues of the 

covariance matrix calculated from the molecular matrix: 

 (1) 

The spherosity index varies from zero for flat molecules, such as benzene, to one for totally 

spherical molecules [38]. The Ui (unsaturation index) is a simple information index for unsatured bonds 

defined as:  
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 (2) 

where nDB, nTB and nAB are the number of of double, triple and aromatic bonds, respectively[36]. 

The Hy is the hydrophilic factor descriptor and it’s calculated from Equation (3): 

 (3) 

where  is the number of hydrophilic groups (-OH, -SH and -NH2), nC represents the number of 

carbon atoms and nSK stands for all atoms excluding Hydrogen [39]. The AMR (molar refactivity) 

descriptor is calculated according to the Ghose-Crippen model, based on a group contribution  

method [40]. The ALOGP descriptor (Ghose-Crippen-Viswanadhan octanol-water partition coefficient) 

is calculated from the ALOGP model consisting of a regression equation based on the hydrophobicity 

contribution of 120 atom types [41]. The TPSA (Topological Polar Surface Area) descriptor originally 

proposed by Ertl P. et al. [42] is calculated from Equation (4):  

 (4) 

the Ci term is the contribution of atom i to the molecular surface, ni is the frequency of the atom i in 

the molecule and the sum runs over all types of polar fragments. The TPSA calculation takes into 

account the contribution of the functional groups containing oxygen and nitrogen atoms to the 

polarization of the molecular surface as implemented in the DRAGON code [36]. 

Additionally we calculated quantum chemical descriptors from DFT (Table 2) as total energy (E), 

dipole moment, hardness (η), electrophilicity index (ω), chemical potential (µ), softness (S) and gap 

HOMO-LUMO. In this work E, corresponds to the ground state energy of our coumarin molecules and 

the dipole moment was calculated as implemented in Gaussian 09 [35]. The chemical potential (µ), 

which is widely used as a descriptor of chemical reactivity, indicates the escape tendency of the 

electrons and it’s calculated from:  

 (5) 

where E is the energy of the system and N is the number of electrons [14]. Here we used the finite 

difference approximation: 

 (6) 

where I is the vertical ionization potential defined as the difference of total energy between cationic 

structures in the optimized geometry of the neutral compounds and the optimized neutral structures: 

I = Ecat − Eneu (7) 

A is the vertical electron affinity defined as the difference of the total energy between the optimized 

neutral structures and the corresponding anions in the optimized geometry of the neutral compounds: 

A = Eneu − Eanion (8) 

The hardness (η) is a global property of the molecular system and measure the resistance imposed 

by it to any change in its electron distribution: 
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(9) 

In the finite difference approximation the above equation is: 

 (10) 

The softness (S) is the inverse of hardness:  

 (11) 

The electrophilicity index (ω) can be determined from chemical potential ( ) and hardness ( ) [14] as: 

 (12) 

where ω represents the stabilization energy of the molecular system when it is saturated by electrons 

coming from the surroundings [43]. 

3.1. Genetic Algorithms (GA) 

We introduced all 13 descriptors into the Neuroshell Predictor program code [44]. According to the 

GeneHunter Genetic Algorithm [45] implemented in this program we obtained the weights of the 

molecular descriptors (see Figure 4). 

Figure 4. Descriptor weights calculated from GA analysis. 

 

Figure 5 shows the linear correlation between the log Yexp (actual) and log Ypred calculated by GA 

analysis (predicted). We obtained a coefficient of multiple determinations (Rsquared) of 0.9313, a 

correlation factor (r) of 0.9658 and a root mean squared error (RMSE) of 0.0786. 

Rsquared is a statistical indicator usually used in multiple regression analysis to compare the 

reliability of the model with respect to reference points. Rsquared is defined as: 

 (13) 

where y is the experimental value,  is the value predicted by the model,  is the average of all the 

output values. Furthermore r is a measure of the linear correlation between experimental and predicted 

values in terms of direction, namely: 
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(14) 

Figure 5. Calculated against experimental antiradical activity. 

 

RMSE is defined as the root mean square of the summation of quadratic terms. These terms 

correspond to the difference between experimental and predicted data values: 

 (15) 

Experimental and calculated antiradical activity, error and percent error are shown in Table 3. The 

error is calculated from the difference between experimental (Yexp) and calculated (Ycal) antiradical 

activity. Percent error is calculated as: 

 (16) 

Table 3. log Yexp and log Ypred antiradical activity, error and % error values of coumarin compounds. 

Compound Log Yexp Log Ypred Error % Error 

A1 1.13 1.16 −0.03 2.65 

B1 1.16 1.13 0.03 2.58 

C1 1.61 1.75 −0.14 8.69 

D1 0.97 1.05 −0.08 8.24 

A2 0.91 0.91 0.00 0.00 

B2 0.91 0.91 0.00 0.00 

C2 1.75 1.61 0.14 8.00 

D2 1.06 1.06 0.00 0.00 
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The highest error value was 8.69% and the lowest one 0%. The average percent error was 3.77%. 

We propose the construction of a Back Propagation Neural Network (BPNN) with the most important 

descriptor Hy (Table 4) in order to obtain a mathematical model that fits with the QSAR theory, this is 

one descriptor per 4 to 10 molecules. 

Table 4. Hydrophilic Factor (Hy).  

Compound Hy 

A1 −0.766 

B1 −0.634 

C1 −0.200 

D1 −0.734 

A2 −0.734 

B2 −0.621 

C2 −0.198 

D2 −0.709 

3.2. Backpropagation Neural Network 

NeuroShell Predictor software [44] was used to build and train our BPNN. The BPNN framework 

was formed with one input neurons, five hidden neurons and one output neuron (see Figure 6).  

Figure 6. Architecture of the back propagation neural network. Ellipses correspond to 

neurons and lines represent the interconnection between them. (1) Input layer, (2) Hidden 

layer and (3) Output layer.  

 

(1)  (2)  (3) 

The BPNN model showed that in all the analyzed compounds Hy descriptor is the most important 

variable in the antiradical activity. The Hy descriptor indicates antiradical activity increases as we 

incorporate hydrophilic groups to the coumarin molecules.  

The linear correlation between log Yexp and log Ypred antiradical activity of coumarins was very 

successful. The graphic is showed in Figure 7. Here we obtained a Rsquered of 0.9196, r = 0.959 and 

RMSE = 0.0850. 

Experimental and calculated antiradical activity, error and percent error are shown in Table 5. The 

highest % error value was 14.29% and the lowest one 1.26%. In our opinion the high errors should 

decrease as the number of molecules is increased. In the BPNN methodology the average percent error 

was 7.18% which corresponds to a 3.41% higher than the calculated from GA. 

Determination of reliability of our QSAR model was done by calculating the statistical parameters 

 and ∆  proposed by Roy et al. [46,47]. The  value for this mathematical model was 0.8687 and 
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the ∆  = 0.0759. For an acceptable QSAR model the average rm
2
 must be >0.5 and ∆rm

2
 < 0.2, in this 

terms the QSAR model proposed here was good. In contrast  and ∆rm
2
 values for our GA model was 

of 0.9014 and 0.056 respectively, but we have to consider that in GA analysis 13 descriptors were used 

and in the ANN only one. These results show the importance to include ANN with the GA 

methodology. A previous QSAR study [48] made with Multiple Linear Regression and 15 more 

complex coumarins derivatives they found that the HOMO, LUMO and partial charges in the OH, N 

and S where the most important descriptors for the development of the antiradical scavenging activity. 

There’s results concord with ours in the way that Hy take account the functional groups OH, NH2 and 

SH. Also in our study we validated our model with the statistical parameters  and ∆  [44,45] that 

are a rigorous method for QSAR evaluation.  

Figure 7. Calculated against experimental antiradical activity. 

 

Table 5. Experimental and calculated antiradical activity, error and % error values of 

coumarin compounds with BPNN model. 

Compound Log Yexp Log Ypred Error % Error 

1 1.13 1.03 0.1 8.85 

B1 1.16 1.04 0.12 10.34 

C1 1.61 1.64 −0.03 1.86 

D1 0.97 1.01 −0.04 4.12 

A2 0.91 1.01 −0.1 10.99 

B2 0.91 1.04 −0.13 14.29 

C2 1.75 1.71 0.04 2.29 

D2 1.06 1.01 0.05 4.72 
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It’s important to mention that the C1 and C2 compounds show the highest antiradical activities 

because both possess an -OH hydrophilic group. This functional group increases the Hy value in such 

a way that we could say that -OH group is crucial for antiradical activity of coumarins.  

4. Experimental  

4.1. General  

All chemicals and solvents were of reagent grade and used as received. Melting points were 

measured on an Electrothermal IA 9100 apparatus and were uncorrected. IR spectra were recorded 

neat using a Varian 3100 FT-IR with ATR system Excalibur Series spectrophotometer. Mass spectra 

were obtained in a Bruker Esquire 6000 spectrometer with an electron ionization mode. 
1
H and 

 

13
C-NMR spectra were recorded on a Varian Mercury 300 (

1
H, 300.08; 

13
C, 75.46 MHz) instrument in 

CDCl3 solutions or DMSO-d6, measured with SiMe4 as the internal reference, chemical shifts are in 

ppm and 
n
J(H-H) in Hertz. 

General Procedure for the Synthesis of Coumarin Derivatives 

The starting coumarins 1A–2D were synthesized by Knovenagel cyclization (Scheme 1) between 

substituted salicylaldehydes (4 mmol) and ethyl acetoacetate (4 mmol) or diethyl malonate (4 mmol) 

with catalytic amounts of piperidine in ethanol (20 mL), according to the methodology reported 

elsewhere [24–26].  

3-Acetyl-2H-1-benzopyran-2-one (A1): Yellow solid. Yield 67.3%. m.p: 118–122 °C, IR (neat),(cm
−1

): 

1719 (OC=O), 1680 (C=O), 1196 and 1161 (C-O). 
1
H-NMR ( ppm, CDCl3): 8.63 (s, 1H, H-4), 7.92 

(d, 1H, H-5, 
3
J = 7.7 Hz), 7.72 (dd, 1H, H-7, 

3
J = 7.6, 7.3 Hz), 7.43 (dd, 1H, H-8, 

3
J = 7.3 Hz), 7.39 

(dd, 1H, H-6, 
3
J = 7.7, 7.6 Hz), 2.56 (s, 3H, H-12). 

13
C-NMR (ppm, CDCl3): 195.1 (C-11), 158.5 (C-2), 

154.6 (C-9), 147.1 (C-4), 134.5 (C-7), 130.8 (C-5), 124.9 (C-6), 124.4 (C-3), 118.2 (C-10), 116.1 (C-8), 

30.1 (C-12). C11H8O3 188.05. m/z = 188.1 (M, 50%), 173.2 (100%), 145.3 (11.9%), 118.3 (11.1%). 

3-Acetyl-6-nitro-2H-1-benzopyran-2-one (B1): Yellow solid. Yield 54.6%. m.p: 200–203 °C; IR (neat), 

(cm
−1

): 1745 (OC=O), 1676 (C=O), 1530 and 1341 (C-NO2), 1275 y 1209 (C-O). 
1
H-NMR ( ppm, 

CDCl3): 8.58 (d, 1H, H-5, 
4
J = 2.6 Hz); 8.55 (s, 1H, H-4); 8.50 (dd, 1H, H-7, 

3
J = 9.1, 

4
J = 2.6 Hz), 7.52 (d, 

1H, H-8, 
3
J = 9.1 Hz), 2.73 (s, 3H, H-12). 

13
C-NMR ( ppm, CDCl3): 194.5 (C-11), 158.6 (C-2), 157.9 

(C-9), 146.1 (C-4), 144.6 (C-6), 128.8 (C-7), 126.5 (C-3), 126.1 (C-5), 118.4 (C-10), 118.2 (C-8), 30.7 

(C-12). C11H7NO5 233.03. m/z = 233.0 (M, 43.9%), 218.3 (100%), 172.3 (19.3%), 144.2 (5.0%). 

3-Acetyl-6-hydroxy-2H-1-benzopyran-2-one (C1): Yellow solid. Yield 90%. m.p: 247–248 °C; IR 

(neat), (cm
−1

): 3155 (O-H), 1736 (OC=O), 1643 (C=O). 
1
H-NMR( ppm, DMSOd6): 9.89 (s, 1H, 

OH), 8.53 (s, 1H, H-4), 7.20 (d, 1H, H-5, 
4
J = 2.9 Hz); 7.14 (dd, 1H, H-7, 

3
J = 8.8, 

4
J = 2.9 Hz), 7.29 

(d, 1H, H-8, 
3
J = 8.8 Hz), 2.54 (s, 3H, H-12). 

13
C-NMR ( ppm, DMSO-d6): 196.0 (C-11), 159.9 (C-2), 

154.6 (C-6), 148.7 (C-9), 147.7 (C-4), 125.1 (C-3), 123.4 (C-7), 119.3 (C-10), 117.2 (C-5), 114.8 (C-8), 

30.7 (C-12). C11H8O4 204.04. m/z = 204.1 (M, 86.0%), 189.1 (100%), 161.2 (19.0%), 134.2 (33.4%). 
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3-Acetyl-6-methoxy-2H-1-benzopyran-2-one (D1): Yellow solid. Yield 89%. mp 180–183 °C. IR 

(cm
−1

): 1723 (OC=O), 1677 (C=O), 1226, 1197 (C-O).
1
H-NMR (ppm, CDCl3): 8.44 (s, 1H, H4), 

7.28 (d, H-8, 1H, 
3
J = 9.1,), 7.20 (dd, 1H, H-7, 

3
J = 9.1, 

4
J = 2.9 Hz), 7.02 (d, 1H, H-5, 

4
J = 2.6 Hz), 

3.85 (s, 3H, OCH3), 2.70 (s, 3H, CH3); 
13

C-NMR ( ppm, CDCl3): 195.9 (C11), 159.7 (C2), 156.6 

(C6), 150.1 (C10), 147.6 (C4), 124.8 (C3), 123.2 (C7), 117.9 (C5), 118.7 (C9), 111.3 (C8), 56.1 

(OCH3), 30.9 (CH3). C12H10O4 218.06 m/z = 218.0 (M, 60.0%), 203.0 (100%), 175.0 (16.6%), 148.0 

(15.3%). EA (%) calculated for C12H10O4: 66.05 C, 4.62 H; found: 66.04 C, 4.61 H.  

Ethyl 2H-1-benzopyran-2-one-3-carboxyate (A2): White solid. Yield 90%. m.p. 91–92 °C, IR (neat), 

(cm
−1

): 1605 (OC=O), 11758 (C=O), 1196 y 1161 (C-O). 
1
H-NMR ( ppm, DMSO-d6): 8.49 (s, 1H, 

H-4), 7.93 (dd, 1H, H-5), 7.39 (dt, 1H, H-6), 7.74 (dt, 1H, H-7), 7.45 (dd, 1H, H-8), 4.30 (q, 2H,  

O-CH2), 1.39 (t, 3H, -CH3). 
13

C-NMR ( ppm, DMSO-d6): 163.0 (C-11), 156.4 (C-2), 154.5 (C-9), 

149.0 (C-4), 134.7 (C-7), 130.7 (C-5), 125.3 (C-6), 118.2 (C-3), 118.3 (C-10), 116.6 (C-8), 61.7 (O-CH2), 

15.5 (-CH3). C12H10O4 218.06. m/z = 219.1 (M, 100%), 173.2 (76%), 146.2 (87.9%), 118.2 (27.4%). 

Ethyl 6-nitro-2H-1-benzopyran-2-one-3-carboxyate (B2): Yellow solid. Yield 89%. m.p = 191–192 °C, 

IR (neat), (cm
−1

): O-C=O (1716), C=O (1746). 
1
H-NMR( ppm, CDCl3): 8.90 (d, 1H, H-5, 

4
J = 3.0 Hz); 

8.93 (s, 1H, H-4); 8.50 (dd, 1H, H-7, 
3
J = 9.0, 

4
J = 3.0 Hz), 7.65 (d, 1H, H-8, 

3
J = 9.0 Hz), 4.32 (q, 2H, 

O-CH2), 1.33 (t, 3H, -CH3). 
13

C-NMR ( ppm, CDCl3): 162.5 (C-11), 158.5 (C-2), 155.2 (C-9), 147.1 

(C-4), 148.8 (C-6), 128.8 (C-7), 118.0 (C-3), 125.4 (C-5), 120.7 (C-10), 118.3 (C-8), 62.7 (O-CH2), 

14.3 (-CH3). C12H9NO6 263.04. m/z = 262.9 (M, 33.0%), 218.2 (91.9%), 191.0 (100%), 161.2 (98.0%). 

Ethyl 6-hydroxy-2H-1-benzopyran-2-one-3-carboxyate (C2): Beige solid, 91%, m.p. = 205–206 °C, IR 

(neat,) (cm
−1

): (O-H) 3324, (O-C=O) 1707, (C=O) 1722. 
1
H-NMR ( ppm, DMSO-d6): 9.93 (s, 1H, 

OH), 8.66 (s, 1H, H4), 7.30 (d, 1H, H-8, 
3
J = 8.8), 7.21 (d, 1H, H-5, 

4
J = 2.9), 7.17 (dd, 1H, H-7,  

3
J = 8.8, 

4
J = 2.9 Hz), 4.29 (q, 2H, OCH2-, 

3
J = 7.1), 1.31 (t, 3H, -CH3, 

3
J = 7.1), 

13
C-RMN ( ppm, 

DMSO-d6): 167.4 (C-11), 159.4 (C-2), 154.5 (C-9), 147.2 (C-4), 140.9 (C-6), 117.1 (C-7), 119.4 (C-3), 

113.3 (C-5), 119.7 (C-10), 120.2 (C-8), 44.1 (O-CH2), 14.2 (-CH3). C12H10O5 234.05. m/z = 234.0 (M, 

67.7%), 189.1 (36.1%), 161.8 (100.0%), 134.2 (31.3%) 

Ethyl 6-methoxy-2H-1-benzopyran-2-one-3-carboxyate (D2): Yellow solid, 92%, m.p. = 142–143 °C, 

IR (neat), (cm
−1

): (O-C=O)1733, (C=O)1740. 
1
H-NMR ( ppm, CDCl3): 8.45 (s, 1H, H-4), 7.26  

(d, H-8, 1H, 
3
J = 5.0), 7.20 (dd, 1H, H-7, 

3
J = 5.0, 

4
J = 2.9, Hz), 6.99 (d, 1H, H-5, 

4
J = 2.9 Hz), 3.89  

(s, 3H, OCH3) 4.38 (q, H, OCH2, 
3
J = 7.0, Hz), 1.47 (s, 3H, -CH3, 

3
J = 7.0 Hz); 

13
C-NMR ( ppm, 

CDCl3): 163.3 (C-11), 157.1 (C-2), 156.4 (C-9), 148.6 (C-4), 149.9 (C-6), 118.0 (C-7), 118.3 (C-3), 

110.8 (C-5), 118.6 (C-10), 122.8 (C-8), 62.1 (O-CH2), 56.1 (CH3O-), 14.4 (-CH3). C13H12O5 248.07. 

m/z = 248.2 (M, 93.1%), 203.1 (32.6%), 176.2 (100%), 148.2 (23.7%). 

4.2. Antiradical Activity Measurement with the DPPH• Assay 

The antiradical activity of compounds A1–D2 was estimated according to a slight modification of 

the procedure reported by Morales and Jimenez-Perez [27]. Dilutions in DMSO solvent at 10 mg/mL 

of the eight compounds were prepared. An aliquot of each sample (50 μL) was added to a solution of 
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1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical (250 µL) prepared fresh daily, at a concentration of  

74 mg/L in ethanol. The mixtures (200 µL) were placed in a 96-well microplate and absorbance at time 

zero was immediately measured using a UV wavelength of 520 nm. Measurement were performed 

every 5 min for 60 min. Antiradical activity evaluation for compounds was measured in terms of 

absorbance decrease at 520 nm of the DPPH• ethanolic solution produced by the effect of each 

compound as a result of their ability to donate a hydrogen giving place to the reduced form of DPPH•. 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) was used as standard molecule. The 

antiradical activity for each compound was determinate in Trolox equivalent antioxidant capacity 

(TEAC). The DPPH• solution in presence of DMSO and in the absence of coumarins was tested and 

used as a negative control. A null DPPH• free radical scavenging for the DMSO was verified. In all 

experiments, samples were analyzed in triplicate, and mean values ± SD were recorded in order to 

present the activity for each compound and be able to evaluate the structure-activity relationships. 

5. Conclusions 

In GA analysis we obtained an average percent error of 3.77% while in BPNN the average percent 

error was 7.18%. This result indicate that the combination of the two methodologies optimize the 

creation of QSAR models. The GA allows finding the most important descriptor for the development 

of the antiradical activity and ANN improves our model with the use of only one molecular descriptor 

to obtain accurate prediction values. The presence of hydroxyl groups on the ring structure of  

3-carboxycoumarins is correlated with their DPPH• radical scavenging effects. The mixed QSAR 

model showed that Hy could indicate that antiradical activity would increase as we incorporate 

hydroxyl groups in the coumarin molecules. According to and ∆
 

obtained for ANN the 

mathematical model proposed in this work has good predictive ability. 
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